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Abstract
Parsing is an important task in natural language processing. A recently pro-

posed neural parser for constituency parsing is recurrent neural network grammar

(RNNG). RNNGs proved to perform very well for English, beating state-of-the-

art results for supervised constituency parsing. However, for other languages,

RNNGs’ effectiveness has yet to be discovered. Unlike English, most languages

are low-resource. This thesis describes our research in exploring RNNGs to parse

low-resource languages, which is represented by Indonesian. Working with a low-

resource language means dealing with sparsity problem. We addressed the issue

by employing character embeddings. Our results show that character embeddings

make RNNGs faster to train, but at the expense of a small performance drop.

Also, we found that RNNGs work surprisingly well in low-data scenario, disput-

ing the preconception that neural-based models need a lot of training data to

function well.
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Chapter 1

Introduction

This thesis describes an exploration of recurrent neural network grammars for

constituency parsing. We explored how well recurrent neural network grammars

parse non-English languages, especially low-resource ones. We chose Indonesian

as a sample of such a language. Also, we employed a character embedding model

to mitigate the sparsity problem in such a low-data scenario.

In this chapter, we present the motivation for this research and discuss the ob-

jectives we seek to achieve. It is then closed by a brief overview of the thesis.

1.1 Motivation

Parsing is an important task in natural language processing. It aims to assign a

structure, usually a syntax tree, to a sentence. For example, an English sentence

the device was replaced might be assigned a syntax tree declaring that the device

is a noun phrase, was replaced is a verb phrase, and their concatenation is a

sentence. An Indonesian sentence pembahasan tadi masih dalam tahap awal1

might be treated similarly: pembahasan tadi is a noun phrase, masih dalam tahap

awal is a verb phrase, and they join to form a sentence. Parse trees of the two

sentences are shown in Figure 1.1. Such parse trees are generally useful as features

for downstream tasks such as semantic role labeling, which seeks to discover

semantic roles in a sentence (Gildea and Jurafsky, 2002). Syntactic information

1English: the previous discussion is still in the early stage.

1
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is found to be very useful for identifying semantic arguments (Punyakanok et al.,

2008). Therefore, parsing is an essential problem in natural language processing.

S

NP

the device

VP

was VP

replaced

(a) A syntax tree of the English sentence the device

was replaced.

S

NP

pembahasan tadi

VP

masih PP

dalam NP

tahap awal

(b) A syntax tree of the Indonesian sentence pemba-

hasan tadi masih dalam tahap awal.

Figure 1.1: Sample syntax trees of an English and an Indonesian sentence.

Recurrent neural network grammars (RNNGs) (Dyer et al., 2016) recently achieved

state-of-the-art result in English constituency parsing. Constituency parsing at-

tempts to assign a sentence to a syntax tree describing the constituents in the

sentence and how they are combined. RNNGs are essentially shift-reduce parsers,

but they ingeniously use neural networks to select the correct action in each step of

the parsing algorithm. RNNGs use vector embeddings to represent words, nonter-

minals, and incomplete syntax trees. Thus, RNNGs suffer from out-of-vocabulary

problem: when there are unseen words at test time. A typical solution is to re-

place rare words in the training set with special tokens for unknown words, learn
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the embeddings of the tokens at training time, and treat unseen words at test

time as these special tokens. However, this approach is completely oblivious to

the similarity between the seen and unseen words because their embeddings are

learned separately. A better approach is to exploit this similarity. For instance,

the word business is very similar to the word businesses. So, if we only have

business in the training set, we would like the parser to infer the embedding of

businesses more accurately by noticing that the two words are morphologically

related.

While RNNGs have been proven to perform well in parsing English, its effective-

ness in parsing other languages has yet to be discovered. Unlike English, most

languages in the world are low-resource, i.e. there are only few (sometimes none

at all) linguistic resources (e.g. annotated corpora) that can be employed in nat-

ural language processing tasks. Therefore, we are interested in seeing how well

RNNGs work on low-resource languages. One such language is Indonesian, which

we used in this work. We chose Indonesian because of its low number of resources

for parsing and our familiarity with the language.

One major problem in dealing with low-resource languages is sparsity. Out-of-

vocabulary problem is one instance of sparsity problem. Sparsity is already a se-

rious problem for high-resource languages such as English, let alone low-resource

ones. We addressed this problem by incorporating character embeddings. Several

studies have demonstrated that character embeddings are sufficient in many lan-

guage tasks (dos Santos and Zadrozny, 2014; Ling et al., 2015; Ballesteros et al.,

2015; Kim et al., 2016; Vylomova et al., 2016; Lee et al., 2016). In dependency

parsing using shift-reduce algorithm, for instance, character embeddings outper-

form word embeddings in many languages (Ballesteros et al., 2015). In these

tasks, a word embedding is computed by composing the embeddings of its char-

acters. Assuming that the training set contains all the characters in the language,

unseen words at test time do not need special treatment; their embeddings can be

computed in the same way as any seen words. Thus, out-of-vocabulary problem

naturally vanishes. Additionally, the number of characters is usually much lower

than the number of words. Hence, the storage space required to store the em-

beddings is much more efficient. On top of that, the sparsity problem is severely

reduced because now we have much fewer parameters to estimate. Likewise, the

previous assumption that the training set contains all the characters are also
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quite frequently satisfied in practice, precisely because working with character

embeddings makes the training data less sparse.

1.2 Objectives

The objectives of this research are:

• Investigating how RNNGs perform in both low-data and non-English lan-

guage scenario, with Indonesian as a sample of such a language.

• Exploring the use of character embeddings for RNNGs by implementing a

character embedding model and comparing it to the original RNNGs that

use word embeddings.

1.3 Overview

This thesis describes our research that is motivated by reasons presented in Sec-

tion 1.1. We seek to achieve our objectives that has been mentioned in Section 1.2.

In Chapter 2, we provide the necessary background to understand our approaches.

Specifically, Section 2.1 explains about constituency parsing, what it is and how it

differs from dependency parsing. Section 2.2 describes recurrent neural networks,

including long short-term memory networks, which are the main neural network

models used in RNNGs. The subsequent section, Section 2.3, describes recur-

rent neural network grammars in more detail. Section 2.4 presents a character

embedding model that we used in this research.

In Chapter 3, the methodology used in this research is presented. Starting from

Section 3.1, we mention the baseline models in this work. Section 3.2 explains

about the evaluation metric used to assess our models. Section 3.3 lists several

datasets that we used including the preprocessing steps applied. In the subsequent

section, Section 3.4, we describe our implementation details. The section is then

closed by a description of our experiments setup in Section 3.5.

Chapter 4 is where we present our results and discussions. The chapter is started

by a presentation of our results and closed by discussions on them. The chapter
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afterward, Chapter 5, is the last chapter of this thesis. That chapter is where we

conclude our work and state possible directions for future work.



Chapter 2

Background

In this chapter, we describe what constituency parsing is and how it differs from

another kind of parsing, namely dependency parsing. This description is then

followed by an explanation on recurrent neural networks, and its variant, long

short-term memory networks. Next, we are ready to cover recurrent neural net-

work grammars, both the discriminative and the generative variants. Lastly, we

close this chapter with an explanation on character embeddings and one example

of character embedding model we used in this research.

2.1 Constituency vs dependency parsing

In our parsing example in Chapter 1, we said that the device is a noun phrase

(NP), was replaced is a verb phrase (VP), and together they constitute a sentence

(S). This example illustrates a possible output of a constituency parser. Thus,

constituency parsing can be defined loosely as a kind of parsing whose purpose is

to discover these constituents and the way they are joined in the sentence. This

information is usually represented as a syntax tree. Figure 2.1a shows an example

of such a tree.

A constituent is described as a group of words that can be considered a single

unit, and constituents having the same label (e.g. NP) can occur in similar

syntactic contexts (Jurafsky and Martin, 2009). For instance, the noun phrase in

the example above can be substituted by another noun phrase the wooden table,

producing a valid sentence the wooden table was replaced. This example shows

6
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S

NP

the device

VP

was VP

replaced

(a) Syntax tree

the device was replaced

subj

det

(b) Dependency tree

Figure 2.1: Example of the different parse trees for the sentence the device was

replaced.

a characteristic of constituency parsing: it is only applicable to languages whose

grammar is able to express ordering rules over constituents. In this case, one such

rule might be a noun phrase can be followed by a verb phrase to form a sentence.

Dependency parsing, on the other hand, does not rely on the grammar being able

to express ordering. It only cares about the binary relation between the words

in the sentence (Jurafsky and Martin, 2009). Dependency parsers tie two words

in the sentence to form a relation and label the said relation. These relations are

usually asymmetric, and when drawn in a tree, they are represented as directed

arcs from the head word to the dependent word. Figure 2.1b shows an example

of a dependency tree.

In our example sentence the device was replaced, as shown in Figure 2.1b, a

dependency parser might link replaced to device and label the relation as subj,

meaning that device is the subject of the verb replaced. The parser might also link

device to the and label the relation as det, meaning that the is the determiner of

the noun device. From this illustration, we can see how ordering does not matter

as much in dependency parsing. All the dependency parser does is linking words,

regardless of their positions. As a result, dependency parsing makes more sense
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ht

xt

ht−1

Figure 2.2: Architecture of an RNN. To compute the hidden state ht, the previous

hidden state ht−1 is included as input along with xt.

for languages that have relatively free word ordering, such as Czech and Japanese.

2.2 Recurrent neural networks

Recurrent neural networks (RNNs) are neural networks designed to model de-

pendency in an input sequence (Elman, 1990). They are characterized by their

recurrent connection which enables hidden state from the previous time step to

be included as input to the current time step. This inclusion allows information

to flow from one time step to the next, which gives RNNs their ability to model

dependency in the sequence. An illustration of an RNN architecture is shown in

Figure 2.2. The figure shows a recurrent connection in an RNN, depicted as a

loop, which represents how the hidden state is fed back as input to the network.

Although it does not seem so on the surface, RNNs are really not that different

from regular feed-forward neural networks. The recurrent connection can be

unrolled to produce a similar architecture to that of a feed-forward network, as

shown in Figure 2.3. The figure shows an unrolled RNN architecture, which

looks surprisingly similar to that of a 3-layer feed-forward neural network. It is

not hard to imagine that unrolling an RNN for longer time steps would result in

an architecture similar to that of a deep feed-forward network.

Mathematically, an RNN computation can be formulated as follows: given an

input sequence x1,x2, . . . ,xT ∈ Rm, at time step t, an RNN with n hidden units
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ht

xt

ht+1

xt+1

ht+2

xt+2

ht−1 ht ht+1 ht+3

Figure 2.3: Architecture of an unrolled RNN for three time steps. This architec-

ture is similar to that of a 3-layer feed-forward neural network.

computes (Cooijmans et al., 2016)

ht = φ(Wxxt + Whht−1 + b) (2.1)

where Wx ∈ Rn×m,Wh ∈ Rn×n,b ∈ Rn are parameters, and φ(·) is a nonlinear

activation function. The initial hidden state h0 ∈ Rn is usually initialized to a

zero vector.

RNNs are usually trained by gradient-based methods such as stochastic gradient

descent. Using such methods, it is necessary to compute the gradients of the

parameters, either via automatic differentiation provided by many deep learn-

ing libraries or via manual derivation of their mathematical expressions. These

gradient computations involve a multiplication chain, which grows longer as the

time step increases. Since each term’s magnitude in the multiplication chain is

typically no larger than one, the gradients become minuscule when the input se-

quence is sufficiently long. These tiny gradients hamper the networks’ ability to

learn. This problem is known as the vanishing gradient problem, which impedes

RNNs’ ability to model long-term dependency in the input sequence (Hochreiter,

1991; Bengio et al., 1994).

2.2.1 Long short-term memory networks

Long short-term memory networks (LSTMs) are specially designed RNNs to com-

bat the vanishing gradient problem (Hochreiter and Schmidhuber, 1997). LSTMs

overcome the said problem by employing a memory cell. LSTMs are able to read

from or write to this cell, regulated by several gates. These gates determine how
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much contribution the memory cell from the previous time step (forget gate) and

the current input (input gate) have to the current memory cell value, and how

much of that value is going to be the output at the current time step (output

gate).

Formally, an LSTM computation can be formulated as follows: given a sequential

input x1,x2, . . . ,xT ∈ Rm, at each time step t, an LSTM with n hidden units

computes (Cooijmans et al., 2016)
i

f

o

g

 = Whht−1 + Wxxt + b (2.2)

ct = σ(f)� ct−1 + σ(i)� tanh(g) (2.3)

ht = σ(o)� tanh(ct) (2.4)

where ct and ht are the memory cell and output at time step t,Wh ∈ R4n×n,Wx ∈
R4n×m,b ∈ R4n are parameters, symbol� denotes an element-wise multiplication,

and function σ(·) and tanh(·) are applied element-wise. σ(f), σ(i), and σ(o) are

the forget, input, and output gate respectively.

Looking at the equations closely, we see how by modulating the three gates,

LSTMs are able to control how much contribution the previous or current time

step has. One thing worth noticing is that the memory cell update expression in

equation 2.3 is almost linear. This linearity enables the gradients to flow more

easily at training time, resulting in the ability of LSTMs to mitigate the vanishing

gradient problem. This ability allows LSTMs to model long-term dependency

much more effectively than RNNs.

2.3 Recurrent neural network grammars

Recurrent neural network grammars (RNNGs), by Dyer et al. (2016), are con-

stituency parsers which employ shift-reduce parsing algorithm. They use recur-

rent neural networks—specifically long short-term memory networks—in deciding

which action to take in each step of the algorithm. Formally, an RNNG is a 3-

tuple (Σ, N,Θ) where Σ is a finite set of terminal symbols, N is a finite set of
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nonterminal symbols (which is mutually exclusive with Σ) and Θ is a collection

of neural network parameters (Dyer et al., 2016). While parsers commonly store

some grammar explicitly, either provided as input or learned at training time,

RNNGs’ grammar is completely and implicitly specified by the parameters Θ.

This parameterization of the grammar also relaxes the assumption of indepen-

dence typically found in probabilistic context-free grammar parsers.

There are two variants of RNNGs. The discriminative ones attempt to directly

model the probability distribution over parse trees given an input string. On the

other hand, the generative ones model the joint probability of a parse tree and

an input string. The next two sections explain the two variants in more detail.

2.3.1 Discriminative variants

The discriminative variants of RNNGs model the conditional probability Pr(y|x)

where x and y denote an input string and a parse tree respectively. Assume that

x is read from left to right. Discriminative RNNGs use two data structures: a

stack S and an input buffer B. The parsing algorithm begins with an empty

stack and an input buffer containing all the words of x from left to right. At each

iteration, one of the following actions is selected:

• NT(X), which introduces a new incomplete nonterminal X by pushing it

onto S. The top of the stack S is now X.

• SHIFT, which shifts the input buffer to the left, effectively removing the

leftmost word in B, and then pushes it onto S. The top of the stack S is

now the shifted word.

• REDUCE, which completes the topmost incomplete nonterminal in S by

popping elements from the top of S until an incomplete nonterminal is

encountered, removing the said nonterminal, and using it as the label of a

new constituent which has the popped elements as its children. The new

constituent is then pushed back onto S. The top of the stack S is now the

said constituent, which is also a completed nonterminal.

The algorithm terminates when B is empty and S contains only one completed

element. The element is the parse tree of x. Table 2.1 demonstrates an example

run of the algorithm.
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Stack (S) Input Buffer (B) Action

1 NT(S)

2 (S the hungry cat meows NT(NP)

3 (S | (NP the hungry cat meows SHIFT

4 (S | (NP | the hungry cat meows SHIFT

5 (S | (NP | the | hungry cat meows SHIFT

6 (S | (NP | the | hungry | cat meows REDUCE

7 (S | (NP the hungry cat) meows NT(VP)

8 (S | (NP the hungry cat) | (VP meows SHIFT

9 (S | (NP the hungry cat) | (VP | meows REDUCE

10 (S | (NP the hungry cat) | (VP meows) REDUCE

11 (S (NP the hungry cat) (VP meows))

Table 2.1: An example run of the discriminative RNNG parsing algorithm for the

input string the hungry cat meows. Parse trees are written in bracket notation.

Vertical bars (|) separate the stack elements (Dyer et al., 2016).

To decide what action at to take at iteration t, discriminative RNNGs compute

a probability distribution over valid actions, conditioned on the action history

a<t. They encode the parser state (the stack, buffer, and action history) into

a vector embedding ut, and pass this vector through a softmax layer to get the

distribution. Formally, this computation can be expressed as (Dyer et al., 2016)

Pr(at|a<t) =
exp

(
r>atut + bat

)∑
a′∈AD(St,Bt)

exp
(
r>a′ut + ba′

) (2.5)

where ra and ba are the embedding and bias term of action a respectively,

AD(S,B) denotes the set of possible (discriminative) parser actions given stack

S and input buffer B, and St and Bt denote the stack and input buffer state at

time step t respectively. The action embeddings ra and biases ba are included as

parameters in Θ. The set of possible (discriminative) parser actions is determined

by the content of stack S and buffer B, whose rules are mentioned in more details

in (Dyer et al., 2016). The parser state embedding vector ut is defined as (Dyer

et al., 2016)

ut = tanh (W [st;ot;ht] + c) (2.6)
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ht

(S NP (VP

the hungry cat

cat hungry the

ut

st ot

p(at)

Figure 2.4: Illustration of the generative RNNG architecture to compute probabil-

ity distribution over possible actions given the vector representation of the stack

(st), output buffer (ot), and action history (ht). This parser state corresponds to

the state at line 8 in Table 2.2 (Dyer et al., 2016).

where W and c are weight matrix and bias vector respectively and included as

model parameters in Θ, symbols st,ot,ht denote the embedding of St, Bt, and

a<t respectively. Figure 2.4 illustrates the architecture of an RNNG (it shows the

generative one, which is very similar and will be explained in the next section).

The embedding ot is obtained by feeding the embeddings of the words in Bt as

inputs to an LSTM. Similarly, the embedding ht is obtained by feeding the em-

beddings of the selected actions a<t as inputs to an LSTM chronologically. Note

that these action embeddings are different from the action embeddings ra used in

equation 2.5 (so, we have two separate embeddings for an action). Obtaining the

embedding st is done rather differently, because the content of the stack can be

a terminal symbol, an incomplete nonterminal, or a complete constituent in the

form of a tree. Simple embeddings lookup tables can be used for the first two,

but the tree embedding is obtained via a syntactic composition function that is

crucial to RNNGs’ performance (Kuncoro et al., 2017). This function accepts the

tree’s children embeddings as inputs and return the tree embedding as output,

as illustrated in Figure 2.5. This composition function uses two LSTMs: forward

and backward LSTMs. The forward LSTM is given the embedding of the nonter-

minal label as the first input, and then the embeddings of the children from left

to right. The backward LSTM is also given the same set of inputs but in reversed
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vu w

NP
z

(a)

NP u v w NP

z

(b)

Figure 2.5: Illustration of the RNNGs’ syntactic composition function. Given a

tree with its children embeddings u,v,w, the embedding z of the tree is computed

by a bidirectional LSTM (Dyer et al., 2016).

order. Outputs from the two LSTMs are then concatenated and passed through

an affine transformation and a tanh activation function to yield the final tree

embedding. Note that because this composition requires the stack’s elements to

be pushed and popped, a stack LSTM (Dyer et al., 2015) is employed to be able

to do those operations efficiently. The parameters of all the LSTMs, together

with the weight matrix and bias term used in the affine transformation of the

composition, and all the embeddings described above are included as parameters

in Θ.

2.3.2 Generative variants

The generative variants of RNNGs model the joint probability of the parse tree

y and the input string x. They are largely the same as the discriminative ones.

The same shift-reduce parsing algorithm is used, but with two alterations:

1. There is no input buffer B; an output buffer O is used instead. The algo-

rithm begins with an empty output buffer.

2. Instead of a SHIFT action, they have GEN(w) actions for every possible

terminal symbol w. When one of these actions is selected, they generate

the terminal symbol w and push it onto the stack S and the output buffer

O.
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Stack (S) Output Buffer (O) Action

1 NT(S)

2 (S NT(NP)

3 (S | (NP GEN(the)

4 (S | (NP | the the GEN(hungry)

5 (S | (NP | the | hungry the hungry GEN(cat)

6 (S | (NP | the | hungry | cat the hungry cat REDUCE

7 (S | (NP the hungry cat) the hungry cat NT(VP)

8 (S | (NP the hungry cat) | (VP the hungry cat GEN(meows)

9 (S | (NP the hungry cat) | (VP | meows the hungry cat meows REDUCE

10 (S | (NP the hungry cat) | (VP meows) the hungry cat meows REDUCE

11 (S (NP the hungry cat) (VP meows)) the hungry cat meows

Table 2.2: An example of a parse tree and sentence generation of the generative

RNNG. Parse trees are written in bracket notation. Vertical bars (|) separate the

stack elements (Dyer et al., 2016).

The algorithm ends when a single completed element remains in the stack S and

O contains all the words in x. An example run of the algorithm is shown in

Table 2.2.

The joint probability of the parse tree y and input string x, Pr(x, y), is defined

as (Dyer et al., 2016)

Pr(x, y) =

|a(x,y)|∏
t=1

Pr(at|a<t) (2.7)

=

|a(x,y)|∏
t=1

exp
(
r>atut + bat

)∑
a′∈AG(St,Ot)

exp
(
r>a′ut + ba′

) (2.8)

where a(x, y) denotes the sequence of (generative) parser actions for input string

x and parse tree y, symbol Ot denotes the output buffer at time step t, and

AG(S,O) is the set of possible (generative) parser actions given stack S and out-

put buffer O. Other symbols mean the same as in the discriminative counterparts.

Computing the parser state embedding ut is also done in the same manner as the

discriminative variants. The set of possible (generative) parser actions is detailed

more clearly in (Dyer et al., 2016).
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The number of GEN(w) actions is equal to the number of possible terminal sym-

bols, which is typically a large number. To reduce this number to a more man-

ageable size, Dyer et al. proposed a two-step approach in generating a terminal

symbol. First, the action to generate is selected (GEN). Then, the terminal sym-

bol is generated conditioned on the current parser state. They further reduced

the complexity of word generation by using class-factored softmax (Baltescu and

Blunsom, 2015; Goodman, 2001). The number of classes is set to
√
|Σ|, so that

the resulting complexity is O(
√
|Σ|), instead of O(|Σ|) had the full vocabulary

size is used.

2.3.3 Training

Training both variants of RNNGs is done very similarly. The training data is

an oracle file containing an ordered list of correct actions for every training sen-

tence. The parser is trained using any gradient-based method, such as stochastic

gradient descent, by maximizing the likelihood of the oracle. Although the train-

ing is done similarly, they correspond to different things. For the discriminative

variants, since there is only SHIFT action, the likelihood being maximized is the

conditional likelihood of the sequence of actions given the corresponding input

string. For the generative variants however, the likelihood of generating the in-

put string is already captured by the GEN(w) actions. Therefore, the likelihood

being maximized is the joint likelihood of the input string and the sequence of

actions.

2.3.4 Inference

Inference corresponds to finding a parse tree ŷ which maximizes Pr(y|x), or for-

mally

ŷ = arg max
y

Pr(y|x) (2.9)

In the discriminative variants, this procedure is done using greedy algorithm.

Starting with the initial parser state, action with the highest probability is se-

lected and performed until the algorithm terminates. The resulting element in

the stack is the parse tree of the input string.
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As for the generative variants, we need to involve Pr(x, y) in the expression, so

ŷ = arg max
y

Pr(y|x) (2.10)

= arg max
y

Pr(x, y)

Pr(x)
(2.11)

= arg max
y

Pr(x, y) (2.12)

Inference in the generative variants is then done using Monte Carlo method.

Samples are drawn from the discriminative variant and then re-ranked by the

generative counterpart. Sample with the highest probability under the generative

variant is the parse tree of the input string. Sampling from the discriminative

variant can be done efficiently by ancestral sampling procedure.

2.4 Character embedding models

Character embedding models have been found to be successful in many language

tasks, such as part-of-speech tagging (dos Santos and Zadrozny, 2014; Ling et al.,

2015), language modeling (Ling et al., 2015; Kim et al., 2016), machine transla-

tion (Vylomova et al., 2016; Lee et al., 2016), and dependency parsing (Ballesteros

et al., 2015). In these tasks, the embedding w of a word w with n characters

c1, c2, . . . , cn can be expressed as

w = f (uc1 ,uc2 , . . . ,ucn) (2.13)

where uc is the embedding of character c and f is a composition function. People

experimented with this composition function f . The function can be a sim-

ple addition (Botha and Blunsom, 2014), convolution with pooling (dos San-

tos and Zadrozny, 2014), or a neural network model, for instance bidirectional

LSTM (Ling et al., 2015; Ballesteros et al., 2015) or convolutional neural net-

work (Kim et al., 2016).

In our research, we used the addition model. The addition model is inspired by

the work of Botha and Blunsom (2014). They proposed that morphologically

similar words should have similar word representations. To achieve this goal,

they defined a mapping µ(·) that maps a word to its sequence of factors, and

each factor f has a corresponding factor vector embedding, rf . An embedding w
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of a word w is then defined as

w =
∑

f∈µ(w)

rf (2.14)

In their work, the mapping µ(·) mapped a word to its surface morphemes. For

instance, the word imperfection was mapped to [im, perfect, ion]. In our research,

however, we mapped a word to its characters, so that the word imperfection was

instead mapped to [i, m, p, e, r, f, e, c, t, i, o, n].



Chapter 3

Methodology

In this chapter, we discuss our research methodology. Firstly, we briefly mention

several other parsers as baselines. Then, we describe the evaluation metric that

we used in our research to measure parsing performance. Next, we discuss the

datasets used and any preprocessing applied. We also cover how unknown words

were handled and which pretrained word embeddings used in our work. This

discussion will be followed by an explanation of our implementation including

the character embedding model. Finally, we describe our experiments setup such

as the initialization method, the optimizer used to train our parsers, and so on.

This description includes the regularization method and sampling for inference

in generative RNNGs.

3.1 Baselines

Our research built on the work by Dyer et al. (2016). So, naturally we picked their

plain RNNGs as our baseline. Also, we selected RNNGs equipped with pretrained

word embeddings as additional baseline. Finally, we included as baselines two

state-of-the-art non-neural parsers for English, namely the Stanford factorized

parser1 (Klein and Manning, 2003) and the Berkeley parser2 (Petrov et al., 2006).

We trained all the above parsers from scratch on our datasets.

1Version 3.7.0: https://nlp.stanford.edu/software/lex-parser.shtml
2Version 1.7: https://github.com/slavpetrov/berkeleyparser

19
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3.2 Evaluation

To evaluate parsing performance, we used a standard metric for parsing called

PARSEVAL (Klavans et al., 1991). It measures the precision and recall of a hy-

pothesis syntax tree against a gold reference syntax tree. A constituent in the

hypothesis tree is labeled as correct if there is a constituent in the reference

tree having the same starting point, ending point, and nonterminal label. The

precision and recall can then be computed as follows (Jurafsky and Martin, 2009)

precision =
# of correct constituents in the hypothesis
# of total constituents in the hypothesis

(3.1)

recall =
# of correct constituents in the hypothesis

# of total constituents in the reference
(3.2)

Rather than reporting the precision and recall separately, a single F1 score is

often reported instead. An F1 score is defined as

F1 =
2PR

P +R
(3.3)

where P and R denote the precision and recall value respectively. Thus, an F1

score is the harmonic mean of precision and recall. In our experiments, we used

the F1 score as a measure of parsing performance. We used a software to compute

this score, called EVALB3, which is available online. This software was also used

by Dyer et al. in their work. We run EVALB with the provided COLLINS.prm

parameter file.

3.3 Datasets

For English, we used the Penn Treebank WSJ dataset with the common split:

section 2–21 as the training set, section 24 as the development set, and section

23 as the test set. The number of sentences in each set is 39,832 sentences,

1,346 sentences, and 2,416 sentences respectively. As for Indonesian, we used

the Indonesian Treebank dataset4. This dataset contains 1,029 parsed sentences

3http://nlp.cs.nyu.edu/evalb/
4https://github.com/famrashel/idn-treebank
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Training Development Testing

Fold 0 618 201 205

Fold 1 618 204 202

Fold 2 618 201 203

Fold 3 618 199 203

Fold 4 618 206 203

Table 3.1: The number of sentences in the training, development, and testing set

for each cross-validation fold in PTB 1029 dataset.

from PAN Localization Indonesian corpora collection5. An example of a parse

tree from the dataset is (the italicized words are not part of the tree but rather

English translations of the word right above them):

(NP (NN (Kera))

monkey

(SBAR (SC (untuk))

for

(S (NP-SBJ (*))

(VP (VB (amankan))

secure

(NP (NN (pesta olahraga)))))))

festival sport

As the example shows, the dataset uses the same nonterminal labels, grammat-

ical function tags, and null elements specification as the Penn Treebank. One

difference is that in the Indonesian Treebank dataset, there can be multiple words

grouped under a single part-of-speech (POS) tag, such as (NN (pesta olahraga)).

To handle this case, we joined the words and treated them as a single word, so it

became (NN pesta_olahraga).

There has not been any research that used this dataset as far as we know, so unlike

Penn Treebank, there is not a common split yet. On top of that, the number of

sentences is very low. Therefore, we employed 5-fold cross-validation to address

this issue. To have a fair comparison between English and Indonesian, we also

5http://www.panl10n.net/indonesia/#Linguistic_Resources_
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Training Development Testing

Fold 0 620 206 206

Fold 1 620 206 206

Fold 2 621 205 206

Fold 3 621 205 206

Fold 4 619 203 206

Table 3.2: The number of sentences in the training, development, and testing set

for each cross-validation fold in ITB full dataset.

created a small Penn Treebank dataset. We picked the first 1,029 sentences from

the full Penn Treebank training set as this small dataset, and applied the same

5-fold cross-validation procedure as the Indonesian dataset. By matching the

dataset size, we are sure that any difference in performance between them is

likely because of the languages themselves, rather than the size of the data. The

full Penn Treebank dataset, the small one, and the Indonesian Treebank dataset

will be called PTB full, PTB 1029, and ITB full henceforth. Table 3.1 and 3.2

show the statistics of PTB 1029 and ITB full datasets respectively. The difference

in total number of sentences for each fold is because we removed sentences from

development and testing set which have nonterminal labels or UNK tokens that do

not occur in the training set. Such case may happen due to the small size of the

datasets. The UNK tokens are explained more clearly in Section 3.3.2.

3.3.1 Preprocessing

Some preprocessing steps that we applied for all the above datasets were:

• Stripping all the grammatical function tags. So, nonterminals such as NP-

SBJ, ADVP-TMP-CLR-TPC-1, and WHADVP=1 become NP, ADVP, and

WHADVP respectively.

• Removing null elements such as *, *T*, and so forth from the parse tree.

The complete specification of the null elements can be found in the Penn

Treebank bracketing guidelines.

For Indonesian Treebank dataset, an additional step to remove extra parentheses

around the terminal words was performed so the resulting parse trees looked like
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the English ones. As illustrations, after these preprocessing steps, a sample Penn

Treebank parse tree

(S (NP-SBJ (PRP He)) (VP (MD ca) (RB n’t) (VP (-NONE- *?*))) (. .))

was transformed into

(S (NP (PRP He)) (VP (MD ca) (RB n’t)) (. .))

and the above Indonesian Treebank parse tree

(NP (NN (Kera))

(SBAR (SC (untuk))

(S (NP-SBJ (*))

(VP (VB (amankan))

(NP (NN (pesta olahraga)))))))

was transformed into

(NP (NN Kera)

(SBAR (SC untuk)

(S (VP (VB amankan)

(NP (NN pesta_olahraga))))))

3.3.2 Unknown words

When training oracle files were generated, singleton words in the training set

were converted into special UNK tokens for unknown words. For Penn Treebank

datasets, we grouped the UNK tokens using the same grouping that Dyer et al.

used in their implementation. These UNK tokens were grouped based on their

characteristics, such as starting with a capital letter (UNK-INITC), lowercased

(UNK-LC), lowercased and ending with -ed (UNK-LC-ed), numbers (UNK-NUM), and

so forth. In total, there could be up to 50 of these tokens. For Indonesian

Treebank datasets, however, we did not perform any grouping; we used only one

such token (UNK).
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3.3.3 Pretrained word embeddings

As explained in the previous section, our baselines include RNNGs equipped

with pretrained word embeddings. We used pretrained embeddings trained on

Wikipedia articles as described in (Bojanowski et al., 2016). The embeddings

are available for both English and Indonesian and can be downloaded from their

Github page6. These embeddings are 300-dimensional. The embeddings for En-

glish and Indonesian contain 2,519,370 and 300,686 pretrained word embeddings

respectively.

3.4 Implementation

In this section, we elaborate our implementation details. This elaboration cov-

ers our RNNGs implementation which is based on the implementation by Dyer

et al. (2016). We also cover how the discriminative and generative RNNGs are

implemented differently in Dyer et al.’s, aside from the mathematical modeling

differences discussed in Chapter 2. Next, we explain about the word clustering

that is required by the class-factored softmax used in generative RNNGs. Lastly,

we elaborate on how the class-factored softmax prevents the out-of-vocabulary

problem from vanishing despite the incorporation of character embeddings.

3.4.1 Recurrent neural network grammars

Our RNNGs implementation extended the implementation by Dyer et al. (2016),

which is available online7. In running our experiments, we used largely the same

configuration as theirs, which is explained below. Note that we also explain some

implementation details that are not explicitly mentioned in Dyer et al.’s paper

but apparent from the implementation code.

6https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
7https://github.com/clab/rnng
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3.4.1.1 Architecture

In Dyer et al.’s work, all the LSTMs, both in the discriminative and the generative

variant of RNNGs, were fixed to have 2 layers. For the discriminative variant,

the dimension of word embeddings, LSTMs inputs (except for the action history

LSTM), and LSTMs hidden layers were set to 32, 128, and 128 respectively. As

for the generative counterpart, they were all set to be 256-dimensional. In both

variants, the action embeddings had 16 dimensions. We used this exact same

architecture in our experiments.

3.4.1.2 Word embeddings

There are some differences between the discriminative and generative RNNGs

in handling the word embeddings before feeding them as inputs to the LSTMs.

For the discriminative RNNGs, a word embedding is first concatenated with

its POS tag embedding and then passed through an affine transformation and

activation function before it is fed as input to the LSTMs. This processing of

POS tags follows the same approach described in (Dyer et al., 2015). However,

for the generative RNNGs, POS tags are not used. Therefore, word embeddings

are fed directly as inputs to the LSTMs without passing them through any affine

transformation or activation function. The embeddings for POS tags are included

as parameters, i.e. they are learned during training. The default size of these POS

tag embeddings is 12, which was used by Dyer et al. We used the same size in

our experiments.

3.4.1.3 Pretrained word embeddings

For the discriminative RNNGs, pretrained word embeddings are incorporated

by concatenating them with the learned word embeddings, in addition to the

POS tag embeddings as described previously. The concatenation result is then

passed through an affine transformation and activation function as usual. For

the generative RNNGs, however, Dyer et al. have not implemented pretrained

word embeddings yet. Therefore, we wrote the implementation ourselves, based

largely on how it is implemented for the discriminative counterpart. Essentially,

whenever a word embedding is needed as input to the LSTMs, the learned word
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embedding and the pretrained word embedding are concatenated, and then passed

through an affine transformation and activation function to get the final word

embedding.

Recall that the dimension of word embeddings for the discriminative RNNGs is

32. This number is much smaller than the dimension of the pretrained embed-

dings which is 300. To account for this factor, we expanded the learned word

embeddings for the discriminative RNNGs to be 300 as well when the pretrained

word embeddings were employed.

3.4.1.4 Activation function

Although in their paper Dyer et al. describe that they used tanh activation

function, in their code, all the activation functions are rectified linear units. A

rectified linear unit (ReLU) activation function is defined as

relu(x) = max(0, x) (3.4)

One well-known advantage of ReLUs as opposed to tanh functions is that ReLUs’

gradients do not saturate for large values of x.

3.4.1.5 Training with UNK tokens

There is a difference on how UNK tokens are used in training between discrimi-

native and generative RNNGs. Generative RNNGs use only the UNK tokens for

its training, i.e. once a word is converted into an UNK token, they completely

ignore what the actual word is during training since only the token is used. In

contrast, discriminative RNNGs care what the actual word is because it has 50%

probability of either using the actual word or its UNK token. This difference is not

documented in their paper.

3.4.2 Word clustering

As explained in Section 2.3, generative RNNGs use class-factored softmax to

model the word generation. This approach requires the words to be clustered so

that the clusters can be used as the classes. Dyer et al. used Brown clustering



Chapter 3. Methodology 27

algorithm (Brown et al., 1992) to obtain the clusters. We used the same clustering

algorithm in our research. Since the clusters for PTB full dataset is provided in

Dyer et al.’s implementation, we only need to run the algorithm on the other two

datasets, PTB 1029 and ITB full, for each of the cross-validation fold. We used

an implementation of Brown clustering that is available online8.

3.4.3 Character embedding model

As explained previously in Section 2.4, we used addition model by Botha and

Blunsom (2014) in our research. Our implementation is straightforward: when-

ever a word embedding is needed, the word is broken down to its characters and

their embeddings are summed. The resulting vector is the embedding of the word.

All the character embeddings have 32 dimensions.

Although we argued in Section 1.1 that using character embeddings alleviates the

out-of-vocabulary problem, which means there is no need for UNK tokens anymore,

we found that this is not the case because of the class-factored softmax in gener-

ative RNNGs. The softmax needs clusters of words to function, not characters.

The clustering algorithm has to be trained on the UNK-ified words of the training

set because if not, the class-factored softmax can encounter out-of-vocabulary

words when the generative RNNGs are evaluated on the development or testing

set. Also, since the generative RNNGs use the discriminative counterparts for

inference, the discriminative variants also need to be trained on UNK-ified train-

ing set. Therefore, simply using character embeddings without modifying the

class-factored softmax does not naturally solve the out-of-vocabulary problem.

To handle these UNK tokens when using character embeddings, our implementation

separates the embeddings for the tokens. Essentially, when an embedding of a

word is needed, the flow goes as follows:

1. If the word is not an UNK token, break down the word to its characters and

compute the sum of their embeddings to get the word embedding.

2. Otherwise, the word is an UNK token. Obtain the embedding for the to-

ken from an embedding lookup table. No character-related operation is

performed.

8Version 1.3: https://github.com/percyliang/brown-cluster
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We chose to separate the two embeddings so that the character embeddings are

actually estimated from the real words rather than artificial ones like the UNK

tokens.

3.5 Experiments setup

This section describes the experiments setup we used in our research. Firstly, we

discuss how training was done: initialization, optimizer, learning rate, and early

stopping. Next, we describe the dropout regularization, how it is implemented

for LSTMs, and more importantly how we chose our dropout rate. The section is

then closed by our explanation on sampling for inference in generative RNNGs.

3.5.1 Training

Using Dyer et al.’s implementation, all RNNG parameters (including the biases)

were initialized using xavier initialization (Glorot and Bengio, 2010). This initial-

ization sets the parameter values to samples drawn from Uniform
(
−
√

6
D
,
√

6
D

)
,

where D is the sum of the parameter dimensions. Stochastic gradient descent was

used as the optimizer with initial learning rate of 0.1. As the training progressed,

the learning rate was decayed at each epoch according to the expression below

ητ =
η0

1 + τr
(3.5)

where ητ is the learning rate at epoch τ , η0 is the initial learning rate, and r

is the decay rate. Similar to Dyer et al.’s experiments setup, we used r = 0.05

for the discriminative and r = 0.08 for the generative RNNGs. Unlike Dyer

et al. though, we extended their implementation to use early stopping to train

our parsers. Every 25 parameter updates, the trained parser was evaluated on

the development set. The training ended if the parser’s performance (F1 score for

the discriminative parser, likelihood for the generative parser) did not improve

on the development set after 10 evaluations. We chose these values based on

computational considerations. The training data was shuffled at the beginning of

each epoch.

For our non-neural parsers, namely the Stanford factorized parser and Berkeley

parser, we used their default settings when training. An exception is when we
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trained Stanford factorized parser on ITB full, we used left head finder instead of

the default head finder optimized for Penn Treebank dataset. We did so because

in Indonesian, the leftmost word is usually the head word (at least for noun

phrases).

3.5.2 Dropout

Dyer et al. used dropout to regularize their LSTMs. In particular, they used

RNN dropout regularization method proposed by Zaremba et al. (2015). This

regularization applies dropout only on the outputs of the LSTM in each layer

when they are fed as input to the next layer, including the inputs accepted by

the LSTM itself. Dyer et al.’s implementation uses this dropout for every LSTM

used by RNNGs: the stack LSTM, the buffer LSTM, the action history LSTM,

and both forward and backward LSTMs of the syntactic composition function.

We kept the same regularization procedure in our experiments.

Since we have different datasets (especially in terms of size) from Dyer et al., we

had to tune our dropout rate. We performed grid search on multiples of 0.25,

i.e. 0.0, 0.25, 0.5, and 0.75, and picked the dropout rate value which yielded the

best performance on the development set. Note that we did not include dropout

rate of 1.0 because this value results in all the vector values being set to zero.

We tried these values rather than more fine-grained ones like multiples of 0.1 for

computational reasons. Also, for PTB 1029 and ITB full datasets, we only tuned

the dropout rate on the 0-th fold and applied the optimal value for all the folds

rather than tuning each fold separately because of the same reason.

3.5.3 Sampling

Recall that Chapter 2 explains that sampling method is used for inference in

the generative RNNGs. Dyer et al. introduced a flattening coefficient α when

drawing samples from discriminative RNNGs. Concretely, each probability de-

fined by the discriminative RNNGs was exponentiated by this coefficient α and

then renormalized before samples were drawn. This flattening process acts simi-

larly to a smoothing method because lower value of α results in a more uniform

distribution and vice versa.
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We also used this flattening coefficient in our experiments. We tuned this coef-

ficient α on the development set by performing grid search on multiples of 0.25,

i.e. 0.25, 0.5, 0.75, and 1.0. Note that we did not include 0.0 as this value results

in a flat uniform distribution. Similar to dropout tuning, we chose these values

rather than more fine-grained ones for computational reasons. We also tuned this

coefficient α on only the 0-th fold of PTB 1029 and ITB full datasets and applied

the optimal value for all folds. This procedure is the same as that of dropout

rate tuning, and so is the reason. For every experiment, we drew 100 samples,

the same value that Dyer et al. reported in their paper.
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Results and discussions

In this chapter, we report on the results of our experiments. This report includes

the results from our baselines, both non-neural parsers and RNNGs. We first

present the parsing F1 scores on the test set for each parsers on every dataset.

Next, we show a table of convergence speed of RNNGs in our experiments. Then,

we show figures to illustrate how RNNGs work on small datasets. We then provide

discussions on our presented results, including speculations on the interesting

ones.

4.1 Results

Table 4.1 shows the parsing F1 scores on the test set for all datasets. It shows the

scores of our baseline parsers, namely the Stanford factorized parser (Klein and

Manning, 2003), Berkeley parser (Petrov et al., 2006), original RNNGs by Dyer

et al. (2016), and RNNGs equipped with pretrained word embeddings. It also

shows the scores of our RNNGs with character embedding additional model

by Botha and Blunsom (2014) employed. The original RNNGs’ results were ob-

tained by training the models using the same setup as Dyer et al., although the

results are slightly lower than what they reported1. We trained the RNNGs with

pretrained word embeddings with a slightly different early stopping configuration:
1Dyer et al. (2016) reported F1 scores of 91.7 and 93.3 for the discriminative and generative

model respectively. We obtained lower scores because we did not train the models long enough,

due to the limited time we had.
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Parser PTB full
PTB 1029 ITB full

Cross-Validation Fold 0 Cross-Validation Fold 0

Stanford parser 81.31 64.60 (1.62) 65.25 61.41 (0.78) 61.51

Berkeley parser 90.02 71.05 (1.45) 72.50 65.73 (1.64) 68.32

Disc RNNG *89.73 80.24 (1.53) 80.83 73.18 (0.52) 73.46

Gen RNNG *92.30 83.00 (1.43) 83.79 78.16 (0.45) 78.42

Disc RNNG +pretrained 90.00 n/a 80.92 n/a 74.91

Gen RNNG +pretrained 92.71 n/a 83.98 n/a 78.63

Disc RNNG +character 87.76 80.32 (1.91) 81.77 72.13 (1.28) 71.78

Gen RNNG +character 91.41 83.36 (2.25) 83.93 76.40 (0.82) 76.71

Table 4.1: Test F1 scores for all datasets. Stanford parser is by Klein and Man-

ning (2003). Berkeley parser is by Petrov et al. (2006). Disc and gen refer to

discriminative and generative variant of RNNG respectively. Suffix +pretrained

and +character mean that pretrained word embeddings and character embed-

ding addition model by Botha and Blunsom (2014) were employed respectively.

Numbers inside parentheses are the standard deviations for the cross-validation

results. n/a indicates that the experiment was too costly to run. Asterisk (*)

means that the number is obtained by training plain RNNGs using the same

setup as Dyer et al. (2016).

the model was evaluated on the development set every 100 parameter updates

and training was stopped when the score did not improve after 5 evaluations. We

used this configuration because of computational reasons.

From the table, we see that character embedding addition model does not seem

to boost parsing performance for small datasets. However, looking closely, for

most cases, the scores still overlap within one standard deviation. Therefore,

they appear to have the same performance with plain RNNGs. Having said that,

as the number of parameters in RNNGs with character embeddings is smaller,

the training converged much faster. Table 4.2 shows the convergence speed for

each RNNG model in our experiments.

From Table 4.2, we see that employing character embeddings seems to reduce

training time for generative RNNGs. The reduction is especially profound for

the large dataset, i.e. PTB full, where the plain generative RNNG needed 7,900

parameter updates to reach convergence while the one with character embedings
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Parser PTB full
PTB 1029 ITB full

Cross-Validation Fold 0 Cross-Validation Fold 0

Disc RNNG 3275 250 250 850 525

Gen RNNG 7900 100 100 175 160

Disc RNNG +pretrained 3600 n/a 800 n/a 325

Gen RNNG +pretrained 3900 n/a 100 n/a 155

Disc RNNG +character 1600 625 700 425 450

Gen RNNG +character 3200 75 75 175 175

Table 4.2: Convergence of training for different RNNG models. Convergence is

defined as the number of parameter updates before the training is early-stopped.

Disc and gen refer to the discriminative and generative variant respectively. Suffix

+pretrained and +character mean that pretrained word embeddings and char-

acter embedding addition model by Botha and Blunsom (2014) were used re-

spectively. The numbers shown for cross-validated datasets are the medians. n/a

indicates that the experiment was too costly to run.

needed only 3,200. We see shorter training time for discriminative RNNGs as

well, but interestingly on PTB 1029 dataset, character embeddings appear to

impede convergence quite severely.

Our experiment results on the development set (available in Appendix A) show

that plain RNNGs perform surprisingly well on small datasets. Upon observing

this finding, we were interested in investigating how well RNNGs work if the

training set size is reduced even more. Figure 4.1 show the test scores for the

plain discriminative and generative RNNGs compared to the Stanford factorized

parser and Berkeley parser when training set size was varied on the 0-th fold of

PTB 1029 and ITB full dataset respectively. We experimented only with the 0-th

fold to reduce the computational cost.

All our experiment results above were obtained using the configuration and ex-

periment setups explained in the previous chapter, except for the RNNGs with

pretrained word embeddings whose early stopping procedure was already men-

tioned above. The dropout rate and flattening coefficient α were tuned to the

development set. This tuning was also performed for each level of training set

size when we varied them. The tuned dropout rate and α values for all our

experiments are available in Appendix B.
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Figure 4.1: Test F1 scores for the 0-th fold of small datasets with various training

set sizes. Training set size of 10% corresponds to roughly 60 sentences. Disc and

gen refer to the discriminative and generative variant of RNNGs respectively.

4.2 Discussions

Based on the results on Table 4.1, we observe that in general, RNNGs appear

to perform better than non-neural parsers such as the Stanford factorized and

Berkeley parser. One exception is the discriminative RNNG with character em-

bedding addition model on PTB full dataset which has F1 score of 87.76, lower

than 90.02 of the Berkeley parser. Our proposed approach of employing charac-

ter embedding model does not seem to help improve RNNGs’ performance, even

on the small datasets, despite the sparsity reduction it provides. Nevertheless,

its results on the small datasets mostly lie within one standard deviation of the

other RNNG baselines. Performance also drops on PTB full dataset, especially

of the discriminative variant where the score drops roughly 2 points. We suspect

that these performance drops are due to the addition model that ignores char-

acter ordering. Even in (Botha and Blunsom, 2014), they handled this issue by

incorporating word embeddings in addition to morpheme embeddings. However,

their solution will not result in sparsity reduction because the number of param-

eters will increase. Hence, we deliberately did not adopt their approach fully.

Another interesting observation is that pretrained word embeddings improved

performance on the large dataset (PTB full) but surprisingly did not do as much
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on the smaller ones (PTB 1029 and ITB full).

Although character embeddings do not appear to improve RNNGs’ performance,

they may help to reduce training time. Table 4.2 shows that RNNGs with char-

acter embeddings converge much faster than the ones without. The speedup is

more profound on PTB full dataset, where both the discriminative and generative

RNNGs are twice as fast to converge when character embeddings are employed.

Even when compared to the RNNGs with pretrained word embeddings, charac-

ter embeddings still converge faster. This trend can be observed on the small

datasets as well, albeit not as profound. An exception to this trend is the dis-

criminative RNNG on PTB 1029 which converged twice as slow compared to the

plain counterpart. We are not sure as to why this phenomenon occurred.

As we explained before, seeing how plain RNNGs worked unexpectedly well on

small datasets, we proceeded to see how they perform on various training set

sizes. The results are shown in Figure 4.1. From the figure, we see that the best

non-neural parser, namely the Berkeley parser, needed 50–60% training data to

beat the discriminative RNNG trained on only 10% of the training set. For the

generative RNNG, the disparity is even wider. Berkeley parser needed roughly

80% training data just to have equal performance as the generative RNNG with

only 10% training data. This trend is observable on both PTB 1029 and ITB

full. Therefore, it seems that RNNGs work really well and are robust on small

data. This finding clashes with the preconception that neural networks need a

lot of data to function well. We speculate that the shift-reduce parsing algorithm

that RNNGs use contribute to their robust performance. At each step of the

algorithm, RNNGs determine what action to take among only a handful number

of possible actions. We believe this formulation ultimately results in a much

smaller parameter space than estimating probabilities in PCFG parsers, which is

what both Stanford factored and Berkeley parser essentially do.



Chapter 5

Conclusions and future work

In this chapter, we conclude our thesis by highlighting the contributions of this

research, relating them with the motivations and objectives mentioned in Chap-

ter 1. It is then closed by suggestions on some areas to which future research

might be directed.

5.1 Conclusions

As stated in Section 1.1, there are several reasons that motivate this research.

Firstly, most languages in the world, unlike English, are low-resource. There are

not many, sometimes none at all, linguistic resources such as annotated treebank

dataset that can be employed for natural language processing. We are interested

to see if RNNGs work on such low-resource languages. We chose Indonesian as

a sample of low-resource language. Secondly, character embeddings are found to

be helpful for many language tasks, and at the same time mitigate the sparsity

problem encountered when working on small data. The objectives of this research

are also formulated around those motivations, namely the investigation of RNNGs

in low-data scenario and the exploration of character embeddings for RNNGs.

Based on the results and discussion in Chapter 4, we present the conclusions of

this research.

Contrary to widespread presumption, RNNGs as neural network models, perform

remarkably well on low-data scenario. Our experiments on small English and

Indonesian datasets show that RNNGs can achieve decent performance when

36
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trained on even as low as 60 sentences. State-of-the-art non-neural parsers need

5–8 times more data to achieve similar level of performance. These findings

suggest that RNNGs may be suitable to be used as constituency parsers for low-

resource languages.

Using character embeddings does not seem to result in tremendous improvement

on RNNGs’ performance as initially hypothesized. This observation is true even

for small datasets, where RNNGs supposedly benefit from the embeddings due

to the sparsity reduction. Having said that, RNNGs with character embeddings

converge faster, especially for large dataset which can be twice as fast as evi-

denced by our experiment results. They even converge faster than RNNGs with

pretrained word embeddings. For some tasks, faster convergence might be more

desirable, even if the performance drops slightly.

In summary, we have accomplished our research objectives. We investigated how

RNNGs work on low-resource languages and found that they worked remarkably

well, contrary to the presumption about neural network models on small data. We

also explored the use of character embeddings, and discovered that they resulted

in slight performance drop, but much faster convergence speed.

5.2 Future work

There are several aspects of this work that can still be refined for future research.

Firstly, as noted in Chapter 3, we did not group the UNK tokens for Indonesian

Treebank dataset. It is interesting if future work can do so and see how it impacts

the results. Secondly, due to the limited time, we could not tune the learning

rate that we used in stochastic gradient descent. Based on our experience, a good

learning rate can improve performance drastically. We unintentionally re-trained

one of our saved models once, and we obtained up to 6 points improvement in

F1 score on development set. This fact attests to the importance of learning rate

tuning for future work. Thirdly, future research might be directed to modifying

class-factored softmax used in generative RNNGs to be used jointly with character

embeddings so that UNK tokens can truly be eliminated. This problem is what

prevented the out-of-vocabulary problem from naturally vanishing as argued in

Section 1.1. Fourthly, more complex character embedding models that are not
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order invariant might also be tried. Models based on convolutional networks (Kim

et al., 2016) or bidirectional LSTMs (Ling et al., 2015) are both order invariant

and more complex than addition model (Botha and Blunsom, 2014) that we used

in this research.

Another area worth exploring for future work is to answer our speculation re-

garding the smaller parameter space of shift-reduce parsing in Section 4.2. It is

interesting to train non-neural models, e.g. maximum entropy model, using the

same shift-reduce parsing algorithm, and compare them to RNNGs. This com-

parison is fairer so the result can confirm if it is indeed the shift-reduce parsing

algorithm that enables RNNGs to work well on small data or something inher-

ent in RNNGs itself. Next, future work might also be directed to investigating

why RNNGs with character embeddings converge slowly in small English dataset.

Lastly, it is also appealing to see if RNNGs also work well with other low-resource

languages.



Appendix A

Results on development set

Parser PTB full
PTB 1029 ITB full

Cross-Validation Fold 0 Cross-Validation Fold 0

Stanford parser 80.33 64.50 (1.27) 62.25 61.48 (1.48) 61.66

Berkeley parser 89.11 70.83 (0.90) 71.54 65.68 (0.95) 65.15

Disc RNNG 88.74 80.89 (0.77) 80.98 74.05 (1.00) 73.69

Gen RNNG 91.29 83.47 (0.46) 83.26 78.09 (1.24) 78.32

Disc RNNG +pretrained 89.30 n/a 82.15 n/a 75.93

Gen RNNG +pretrained 92.15 n/a 83.68 n/a 79.38

Disc RNNG +character 86.84 81.17 (1.15) 81.27 73.54 (1.00) 73.57

Gen RNNG +character 90.39 82.98 (0.75) 82.65 76.81 (1.32) 77.21

Table A.1: Dev F1 scores for all datasets. Stanford parser is by Klein and Man-

ning (2003). Berkeley parser is by Petrov et al. (2006). Disc and gen refer to

discriminative and generative variant of RNNG respectively. Suffix +pretrained

and +character mean that pretrained word embeddings and character embed-

ding addition model by Botha and Blunsom (2014) were employed respectively.

Numbers inside parentheses are the standard deviations for the cross-validation

results. n/a indicates that the experiment was too costly to run.
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Figure A.1: Dev F1 scores for the 0-th fold of PTB 1029 dataset with varying

training set size. Training set size of 10% corresponds to roughly 60 sentences.

Disc and gen refer to the discriminative and generative variant of RNNGs respec-

tively.
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Figure A.2: Dev F1 scores for the 0-th fold of ITB full dataset with varying train-

ing set size. Training set size of 10% corresponds to roughly 60 sentences. Disc

and gen refer to the discriminative and generative variant of RNNGs respectively.
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Tuning results

PTB full PTB 1029 ITB full

Disc RNNG dropout rate 0.20 0.25 0.25

Gen RNNG
dropout rate *0.30 0.25 0.50

coefficient α *0.80 1.00 0.50

Disc RNNG +pretrained dropout rate 0.25 0.25 0.25

Gen RNNG +pretrained
dropout rate 0.25 0.50 0.50

coefficient α 1.00 0.50 0.75

Disc RNNG +character dropout rate 0.00 0.25 0.25

Gen RNNG +character
dropout rate 0.25 0.25 0.50

coefficient α 1.00 0.75 0.50

Table B.1: Optimal dropout rate and flattening coefficient α obtained by tuning

on the development set for each dataset. For PTB 1029 and ITB full datasets, the

tuning was done only on the 0-th fold’s development set. Disc and gen refer to

discriminative and generative variant of RNNG respectively. Suffix +pretrained

and +character mean that pretrained word embeddings and character embed-

ding addition model by Botha and Blunsom (2014) was employed respectively.

Asterisk (*) indicates that the number is obtained from (Dyer et al., 2016)
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Size (%)
Disc RNNG Gen RNNG

dropout rate dropout rate coefficient α

10 0.25 0.50 1.00

20 0.25 0.50 1.00

30 0.50 0.50 1.00

40 0.25 0.50 0.50

50 0.25 0.50 0.75

60 0.25 0.50 0.50

70 0.25 0.75 0.75

80 0.25 0.50 0.75

90 0.50 0.50 1.00

Table B.2: Optimal dropout rate and flattening coefficient α obtained by tuning

on the development set of PTB 1029 dataset for each level of training set size. Disc

and gen refer to the discriminative and generative variant of RNNG respectively.

Size (%)
Disc RNNG Gen RNNG

dropout rate dropout rate coefficient α

10 0.25 0.50 0.50

20 0.25 0.50 1.00

30 0.25 0.50 0.75

40 0.50 0.50 1.00

50 0.50 0.75 1.00

60 0.25 0.75 1.00

70 0.25 0.50 1.00

80 0.25 0.50 0.50

90 0.25 0.50 0.75

Table B.3: Optimal dropout rate and flattening coefficient α obtained by tuning

on the development set of ITB full dataset for each level of training set size. Disc

and gen refer to the discriminative and generative variant of RNNG respectively.
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